CNTF treatment of the retina

نویسندگان

  • Z. Diala Ezzeddine
  • Xianjie Yang
  • Tom DeChiara
  • George Yancopoulos
  • Constance L. Cepko
چکیده

Lineage analyses of vertebrate retinae have led to the suggestions that cell fate decisions are made during or after the terminal cell division and that extrinsic factors can influence fate choices. The evidence for a role of extrinsic factors is strongest for development of rodent rod photoreceptors (‘rods’). In an effort to identify molecules that may regulate rod development, a number of known factors were assayed in vitro. Ciliary neurotrophic factor (CNTF) was found to have a range of effects on retinal cells. Addition of CNTF to postnatal rat retinal explants resulted in a dramatic reduction in the number of differentiating rods. Conversly, the number of cells expressing markers of bipolar cell differentiation was increased to a level not normally seen in vivo or in vitro. In addition, a small increase in the percentage of cells expressing either a marker of amacrine cells or a marker of Müller glia was noted. It was determined that many of the cells that would normally differentiate into rods were the cells that differentiated as bipolar cells in the presence of CNTF. Prospective rod photoreceptors could make this change even when they were postmitotic, indicating that at least a subset of cells fated to be rods were not committed to this fate at the time they were born. These findings highlight the distinction between cell fate and commitment. Resistance to the effect of CNTF on rod differentiation occurred at about the time that a cell began to express opsin. The time of commitment to terminal rod differentiation may thus coincide with the initiation of opsin expression. In agreement with the hypothesis that CNTF plays a role in rod differentiation in vivo, a greater percentage of cells were observed differentiating as rod photoreceptors in mouse retinal explants lacking a functional CNTF receptor, relative to wild-type littermates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intravitreal injection of ciliary neurotrophic factor (CNTF) causes peripheral remodeling and does not prevent photoreceptor loss in canine RPGR mutant retina.

Ciliary neurotrophic factor (CNTF) rescues photoreceptors in several animal models of retinal degeneration and is currently being evaluated as a potential treatment for retinitis pigmentosa in humans. This study was conducted to test whether CNTF prevents photoreceptor cell loss in XLPRA2, an early onset canine model of X-linked retinitis pigmentosa caused by a frameshift mutation in RPGR exon ...

متن کامل

Intravitreal Injection of Ciliary Neurotrophic Factor (CNTF) Causes Peripheral Remodeling and Does Not Prevent Photoreceptor Loss in Canine <em>RPGR</em> Mutant Retina

Ciliary neurotrophic factor (CNTF) rescues photoreceptors in several animal models of retinal degeneration and is currently being evaluated as a potential treatment for retinitis pigmentosa in humans. This study was conducted to test whether CNTF prevents photoreceptor cell loss in XLPRA2, an early onset canine model of X-linked retinitis pigmentosa caused by a frameshift mutation in RPGR exon ...

متن کامل

A combination of CNTF and BDNF rescues rd photoreceptors but changes rod differentiation in the presence of RPE in retinal explants.

PURPOSE To gather information regarding the combination of ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF), compared with the individual factors when used as a treatment to retard photoreceptor cell loss in rd mouse retina explants and to investigate the observation that the retinal pigment epithelium (RPE) influences rod differentiation by this treatment. METH...

متن کامل

BMP4 and CNTF are neuroprotective and suppress damage-induced proliferation of Müller glia in the retina.

In response to acute damage, Müller glia in the chicken retina have been shown to be a source of proliferating progenitor-like cells. The secreted factors and signaling pathways that regulate this process remain unknown. The purpose of this study was to test whether secreted factors, which are known to promote glial differentiation during development, regulate the ability of Müller glia to prol...

متن کامل

Ciliary neurotrophic factor and stress stimuli activate the Jak-STAT pathway in retinal neurons and glia.

Ciliary neurotrophic factor (CNTF) is pleiotrophic for central, peripheral, and sensory neurons. In the mature retina, CNTF treatment enhances survival of retinal ganglion and photoreceptor cells exposed to otherwise lethal perturbation. To understand its mechanism of action in vivo, the adult rat retina was used as a model to investigate CNTF-mediated activation of Janus kinase/signal transduc...

متن کامل

STAT3-mediated signaling in the determination of rod photoreceptor cell fate in mouse retina.

PURPOSE The purpose of this study was to determine the intracellular pathways by which ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF) negatively regulate the development of rod photoreceptors in the mouse retina. METHODS Retina explant cultures derived from timed-pregnant CD-1 mice were used to monitor rod photoreceptor differentiation. CNTF was used to activate the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997